메뉴 바로가기
주메뉴 바로가기
컨텐츠 바로가기

참여교수 및 연구

  • 참여교수 및 연구
  • 참여교수 개별소개

참여교수 개별소개

최철수, M.D., Ph.D.
소속 및 직위
소속: 의예과 , 직위: 교수
실험실명
분자세포 생리 및 대사실험실(Laborartory of Cellular & Molecular Physiology and Metabolism)
연구분야
대사학/내분비학
연구실위치
암당뇨연구원 S201호
전공분야
분자의학, 비만, 당뇨병, 이상지질혈증, 지방간
  • +82-32-899-6076
  • cschoi@gachon.ac.kr
  • +82-32-899-6077

학력 및 경력

 

2010-현재 소장, 국가지정대사성질환약리효능평가센터(NECMD)

2007-현재 소장, 한국마우스대사성질환표현형분석센터(KMMPC) 

2007-현재 부교수, 교수. 가천대학교 의과대학 

2005-2008 Director, the Integrative Physiology Core of the Yale-NIH Mouse Metabolic Phenotyping Center.

2003-2005 Visitingprofessor, Endocrinology, Internal Medicine, Yale University  

1997-2000 Research Associate, Keck School of Medicine, University of Southern California

1995-1999 Ph.D., Pusan National Univ. Pusan, Korea  

1991-1993 M.S., Pusan National Univ. Pusan, Korea  

1981-1987 M.D., College of Medicine, Pusan National Univ. Pusan, Korea  

 

 

 

소개

 

현대 사회에서 가장 폭발적으로 증가하는 대사증후군(비만, 당뇨병, 이상지혈증)의 발생기전을 연구하며, 이를 통하여 비만 및 인슐린 저항성이 대사성질환의 근본적인 원인으로 제시하였음. 특히 비만 및 인슐린저항성을 극복할 수 있는 치료타겟 발굴 및 신약개발 중개연구를 수행하고있음. 한국마우스대사성질환표현형분석센터(KMMPC)를 기반으로 대사성질환 유전자변형마우스연구를 통한 생체 유전자기능 규명연구는 글로벌 선도그룹으로 인정받고있으며, 국가지정대사성질환약리효능평가센터 및 길병원 연구중심R&D 육성 사업을 통한 대사성질환 혁신 신약개발 연구도 집중하고 있음. 


키워드

 

대사성질환, 비만, 인슐린저항성, GEM포현형분석, 혁신 신약개발  

 



최근 연구업적(2015- 현재)  (최근5년간의 주요연구실적)

      

       1. Myostatin Inhibition-Induced Increase in Muscle Mass and Strength Was Amplified by Resistance Exercise Training, aDietary Essential Amino Acids 

        Improved Muscle Quality in Mice. Nutrients. 13(5):1508, 2021      

 

2. Microneedle array sensor for monitoring glucose in single cell using glucose oxidase-bonded polyterthiophene coated on AuZn oxide layer. Sensors and Actuators B Chemical. 320:128416, 2020


3. The essential role of fructose-1,6-bisphosphatase 2 enzyme in thermal homeostasis upon cold stress. 52(3):485-496. Exp Mol Med 52(3):485-496, 2020

 

4. Separation detection of hemoglobin and glycated hemoglobin fractions in blood using the electrochemical microfluidic channel with a conductive polymer composite sensor. Biosens Bioelectron. 142:111515, 2019

 

5. Adipocyte-specific deficiency of de novosphingolipid biosynthesis leads to lipodystrophy and insulin resistance Diabetes 66(10):2596-2609, 2017

 

6. Phospholipase D1 deficiency in mice causesnonalcoholic fatty liver disease via an autophagy defect. Sci Rep. 6:39170,2016

 

7. Glutamate dehydrogenase activator BCH stimulatingreductive amination prevents high fat/high fructose diet-inducedsteatohepatitis and hyperglycemia in C57BL/6J mice. Sci Rep. 5:37468, 2016

 

8. The role of amino acid-induced mammalian target of rapamycin complex 1(mTORC1) signaling in insulin resistance. Experimental & Molecular Medicine 48(1): e201, 2016

 

9.  A potent and selective 11β-hydroxysteroid dehydrogenase type 1 inhibitor, SKI2852, ameliorates metabolic syndrome in diabetic mice models. Eur J Pharmacol. 768:139-48, 2015

         
  

10. Use of in vivo Magnetic Resonance Spectroscopy (MRS) for Studying Metabolic Diseases. Exp Mol Med 47:e139, 2015

 

11. Insulin resistance and white adipose tissueinflammation are uncoupled in energetically challenged Fsp27-deficient mice.Nat. Commun. 6:5949, 2015